Nd:YLF

Nd:YLF is grown utilizing a advanced modified Czochralski technique. Nd:YLF offers an alternative to the more common Nd:YAG host for near IR operation. The combination of weak thermal lensing, large fluorescence line width and naturally polarized oscillation makes Nd:YLF an excellent material for CW, modelocked operation.

Advantages of Nd:YLF Crystal

- High power, low beam divergence, efficient single mode operation
- High average power Q-switched at a moderate repetition rate
- Linear polarized resonators for Q-switching and frequency doubling
- Stimulated emission cross section and lifetime product is favorable for low CW threshold
- 1053nm output matches gain curves of Nd:Glass and performs well as an oscillator and pre-amplifier for this host.

Basic Properties

Formula	Nd: LiYF4
Crystal Structure	Tetragonal
Space Group	I41/a
Lattice Parameters	a=5.16Å,c=10.85 Å
Moh Hardness	4-5
Melting Point	825°C
Density	3.95 g/cm ³
Thermal Conductivity	0.06 W /cm°C
Heat Capacity	0.79 J g ^{.1} K ^{.1}
Thermal Expansion	13 x 10 ⁻⁶ °C ¹ (along a axis)
	8 x 10 ⁻⁶ °C ⁻¹ (along c axis)
Young's Modulus	7.65x10 ⁸ g/cm ²

Optical Properties

Transparency Region	180 ~ 6700 nm	
Peak Stimulated Emission Cross Section	1.8×10 ⁻¹⁹ cm² (E ∥ c) at 1047 nm	
	1.2×10 ⁻¹⁹ cm² (E⊥c) at 1053 nm	
Spontaneous Fluorescence Lifetime	485µs for 1% Nd	
Scatter Losses	<0.2%/cm	
Peak Absorption Coefficient	α =10.8cm ⁻¹ (792.0 nm E c)	
(for 1.2% Nd)	α =3.59cm ⁻ 1 (797.0 nm E⊥c)	
Fluorescent Lifetime (Nd 1at%)	230 µs	
Laser Wavelength	1047nm (c, or a-cut crystal)	
	1053nm (\perp c, or c-cut crystal)	
Index of Refraction	n _e = 1.456, n _o = 1.479 at 525 nm	
	$n_e = 1.448$, $n_o = 1.470$ at 1050 nm	
Therm-optic Coefficients (dn/dT)	-2.44x10-6/ °C, -0.54x10-6/ °C at 436 nm	
	-2.86x10-6/ °C, -0.91x10-6/ °C at 578 nm	
	-4.30x10 ⁻⁶ /°C, -2.00x10 ⁻⁶ /°C at 1060 nm	
Sellmeier Equations (λ in $\mu m)$	$n_{o}{}^{2} = 1.38757 + 0.70757 \lambda^{2} / (\lambda^{2} - 0.00931) + 0.18849 \lambda^{2} / (\lambda^{2} - 50.99741)$	
	$n_{e^2} = 1.31021 + 0.84903\lambda^2/(\lambda^2 - 0.00876) + 0.53607\lambda^2/(\lambda^2 - 134.9566)$	

YLF exhibits tetragonal symmetry with crystallographic axes $a=b \neq c$, which are orthogonal, $\alpha = \beta = g=90^{\circ}$. YLF is a uniaxial crystal with its optical axis aligned with the c axis. Our standard Nd:YLF is grown along the a direction. The π -transition (E \parallel c) occurs at 1047nm with an emission cross-section 50% greater than the o-transition (E \perp c) cross section at 1053nm.

Standard Specifications

Standard Nd Dopant Concentration	1.0±0.1%
Wavefront Distortion	\leqslant 0.25 λ /inch
Extinction Ratio	≥28 dB
Rod Sizes	Diameter: 3~15mm, Length: 1~150mm
Dimensional Tolerances	Diameter: +0.00/-0.05mm, Length +0.5/-0.2 mm
Flatness	λ/8 @633 nm
Parallelism	< 10 arc seconds
Perpendicularity	< 5 arc minutes
Surface Quality	10/5 Scratch/Dig per MIL-0-13830A
Barrel Finish	50 - 80 micro-inch (RMS)
Clear Aperture	> Central 90%
AR Coatings	R < 0.15% @1047nm or 1053nm per surface

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application, AOTK reserves the right to change at any time of a product offered for sale herein. AOTK makes no representations that the products herein are free from any intellectual property claims of others. Please contact AOTK for more information.

Nd:YLF 2

