
# KDP & KD\*P

Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD\*P or DKDP) Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD\*P) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling and quadrupling of a Nd:YAG laser at the room temperature. In addition, they are also excellent electro-optic crystals with high electro-optic coefficients, widely used as electro-optical modulators, such as Q-switches, Pockels Cells, etc.

AOTK supplies high quality KDP and KD\*P crystals in large quantities for these applications. Because their polished surfaces are easier to be moistened, however, the user is advised to provide a dry condition (<50%) and the sealed housing for preservation. For this purpose, AOTK also provides polishing and sealed housing services for the KDP family crystals. Our engineers will serve you to select and design the best crystal, according to the laser parameters you provide.



#### **Applications**

- Second, third, and fourth harmonic generation of Nd:lasers
- Frequency doubling of dyer laser
- High power laser frequency conversion materials
- Shutter for high speed photography
- Electro-optical modulator and Q switches

### **Basic Properties**

## **Structural and Physical Properties**

|                                          | KDP                               | KD*P (DKDP)                       |
|------------------------------------------|-----------------------------------|-----------------------------------|
| Chemical Formula                         | KH <sub>2</sub> PO <sub>4</sub>   | KD <sub>2</sub> PO <sub>4</sub>   |
| Crystal Structure                        | Tetragonal                        | Tetragonal                        |
| Transmission Range                       | 200-1500nm                        | 200-1600nm                        |
| Nonlinear Coefficients                   | d <sub>36</sub> =0.44pm/V         | d <sub>36</sub> =0.40pm/V         |
| Refractive Indexes                       | n <sub>o</sub> = 1.4938           | n <sub>o</sub> = 1.4948           |
| (at 1064nm)                              | n <sub>e</sub> = <b>1</b> .4599   | n <sub>e</sub> = 1.4554           |
| Electro-Optical Coefficients             | r <sub>41</sub> =8.8pm/V          | r <sub>41</sub> =8.8pm/V          |
|                                          | $r_{63}$ =10.3pm/V                | r <sub>63</sub> =25pm/V           |
| Longitudinal Half-Wave Voltage           | $V_p$ =7.65KV ( $\lambda$ =546nm) | $V_p$ =2.98KV ( $\lambda$ =546nm) |
| Absorption                               | 0.07/cm                           | 0.006/cm                          |
| Temperature Synchronism Width            | 11.5 °C*cm                        | 7.4 °C*cm                         |
| Spectral Synchronism Width               | 106 Å*cm                          | 32 Å*cm                           |
| Angle Synchronism Width                  | 0.84 mrad*cm                      | 0.94 mrad*cm                      |
| Absorption Coefficient, cm <sup>-1</sup> | 0.07                              | 0.006                             |
|                                          |                                   |                                   |

#### **Selimeier Equations**

| KDP  | $\begin{split} &n_o{}^2 = 2.259276 + 0.01008956/(\lambda^2 - 0.012942625) + 13.005522\lambda^2/(\lambda^2 - 400) \\ &n_e{}^2 = 2.132668 + 0.008637494/(\lambda^2 - 0.012281043) + 3.2279924\lambda^2/(\lambda^2 - 400) \end{split}$        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KD*P | $\begin{split} &n_o{}^2 = 1.9575544 + 0.2901391/(\lambda^2 - 0.0281399) - 0.02824391\lambda^2 + 0.004977826\lambda^4 \\ &n_e{}^2 = 1.5005779 + 0.6276034/(\lambda^2 - 0.0131558) - 0.01054063\lambda^2 + 0.002243821\lambda^4 \end{split}$ |

# KDP & KD\*P 2

#### **Specifications**

| Dimensional Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W $\pm$ 0.1mm) x (H $\pm$ 0.1mm) x (L +0.2/-0.1 mm)   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Angle Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta\theta$ < $\pm$ 0.2°, $\Delta\phi$ < $\pm$ 0.2° |  |
| Flatness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | λ/8 @633 nm                                            |  |
| Surface Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/5 Scratch/Dig per MIL-0-13830A                      |  |
| Parallelism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 20 arc seconds                                       |  |
| Perpendicularity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 5 arc minutes                                        |  |
| Clear Aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | > 90% central area                                     |  |
| Quality Warranty Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | one year under proper use                              |  |
| Dimensional Tolerance $(W \pm 0.1 mm) \times (H \pm 0.1 mm) \times (L \pm 0.2/-0.1 mm) \times (L \pm 0.2/-0.$ |                                                        |  |

#### Note

- KDP and KD\*P is highly hygroscopic and the coating can Not be available.
  Please keep it in a dry environment, and sealed housing is recommended.
- The LilO₃ crystals is available too.

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application, AOTK reserves the right to change at any time of a product offered for sale herein. AOTK makes no representations that the products herein are free from any intellectual property claims of others. Please contact AOTK for more information.

