Cr⁴⁺:YAG

Cr⁴⁺:YAG is an excellent crystal for passively Q-switching diodepumped or lamp-pumped Nd:YAG, Nd:YVO₄, Nd:YLF, Yb:YAG or other Nd and Yb doped lasers at wavelength range from 800 to 1200 nm). Passive Q-switches or saturable absorbers provide high power laser pulses without electro-optic Q-switches, thereby reducing the package size and eliminating a high voltage power supply.

It is easy to be operated and therefore outstandingly suited to replace LiF and Dye which are commonly used for passive Q-switching, because of its superior properties: large absorption cross section in the near IR, high damage threshold (>500 MW/cm²), broad absorption band, good thermal stability and heat dissipation (especially at high repetition rates).

Cr⁴⁺:YAG is more robust than dyes or color centers and is the material of choice for Nd:YAG, Nd:YVO₄, Nd:YLF, Yb:YAG or other Nd and Yb doped lasers in wavelength range from 800 to 1200 nm).

A pulse width of 8.3ns and a Q-switching efficiency of 56.9% were obtained by using passive Q-switched of Nd:YAG laser. Cr⁴⁺:YAG showed that the pulse width of passively Q-switched lasers could be as short as 5ns for diode pumped Nd:YAG lasers and repetition as high as 10kHz for diode pumped Nd:YVO₄ lasers. Furthermore, an efficient green output at 532 nm, and UV output at 355 nm and 266 nm were generated, after a subsequent intracavity SHG in KTP or LBO, THG and 4HG in LBO and BBO for diode pumped and passive Q-switched Nd:YVO₄ and Nd:YAG lasers.

Basic Properties

Chemical Formula	Cr ⁴⁺ :Y ₃ Al ₅ O ₁₂
Crystal Structure	Cubic
Dopant Concentration	0.5-3.0 mol%
Mohs Hardness	8.5
Density	4.55 g/cm ³
Melting Point	1950 °C
Thermal Conductivity	0.14 W cm ⁻¹ K ⁻¹
Thermal Expansion	6.9 x 10 ⁻⁶ °C ⁻¹
Thermal Shock Resistance	790 Wm ⁻¹
Refractive Index	1.82 @1064 nm
Damage Threshold	> 500 MW/cm ²

Standard Specifications

Standard Aperture	Ø3~10 mm, 2x2~12x12 mm ²	
Initial Transmission	5.0% ~ 98.0%	
Transmission Tolerance	± 2%	
Flatness	λ/8 @633 nm	
Parallelism	< 20 arc seconds	
Perpendicularity	< 5 arc minutes	
Surface Quality	10/5 Scratch/Dig per MIL-0-13830A	
Barrel Finish	50 - 80 micro-inch (RMS)	
Clear Aperture	> Central 90%	

Cr4+:YAG Standard Products

Part No.	Initial Transmission	Section Dimension	Coatings
CYAG3350	$T_0 = 50\%$	3x3mm	AR/AR @ 1064 nm
CYAG3360	$T_0 = 60\%$	3x3mm	AR/AR @ 1064 nm
CYAG3370	$T_0 = 70\%$	3x3mm	AR/AR @ 1064 nm
CYAG3375	$T_0 = 75\%$	3x3mm	AR/AR @ 1064 nm
CYAG3380	$T_0 = 80\%$	3x3mm	AR/AR @ 1064 nm
CYAG3390	$T_0 = 90\%$	3x3mm	AR/AR @ 1064 nm
CYAG0630	$T_0 = 30\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0650	$T_0 = 50\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0660	$T_0 = 60\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0670	$T_0 = 70\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0680	$T_0 = 80\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0690	$T_0 = 90\%$	Ø6mm	AR/AR @ 1064 nm
CYAG0820	$T_0 = 20\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0830	$T_0 = 30\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0850	$T_0 = 50\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0860	$T_0 = 60\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0870	$T_0 = 70\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0880	$T_0 = 80\%$	Ø8mm	AR/AR @ 1064 nm
CYAG0890	$T_0 = 90\%$	Ø8mm	AR/AR @ 1064 nm
CYAG1010	$T_0 = 10\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1020	$T_0 = 20\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1030	$T_0 = 30\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1050	$T_0 = 50\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1060	$T_0 = 60\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1070	$T_0 = 70\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1080	$T_0 = 80\%$	Ø 10 mm	AR/AR @ 1064 nm
CYAG1090	T ₀ = 90%	Ø 10 mm	AR/AR @ 1064 nm

Note

- Other specifications of Cr4+:YAG crystals and coatings are available upon request.
- Please specify the section dimension, initial transmission (or optical density) and coatings while ordering Cr⁴⁺:YAG as passive Q-switch components.
- The relationship of initial transmission and optical density (0.D.) value is: $T = 10^{-0.D.}$.

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application, AOTK reserves the right to change at any time of a product offered for sale herein. AOTK makes no representations that the products herein are free from any intellectual property claims of others. Please contact AOTK for more information.

Cr4+:YAG 2

